€

Complete
Reference




862 C++: The Complete Reference

his chapter describes the classes and functions that support iterators, allocators,
and function objects. These components are part of the standard template library.
They may also be used for other purposes.

While containers and algorithms form the foundation of the standard template library,
iterators are the glue that holds it together. An iterator is a generalization (or perhaps
more precisely, an abstraction) of a pointer. Iterators are handled in your program like
pointers, and they implement the standard pointer operators. They give you the ability
to cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array.

Standard C++ defines a set of classes and functions that support iterators. However,
for the vast majority of STL-based programming tasks, you will not use these classes
directly. Instead, you will use the iterators provided by the various containers in the
STL, manipulating them like you would any other pointer. The preceding notwithstanding,
it is still valuable to have a general understanding of the iterator classes and their contents.
For example, it is possible to create your own iterators that accommodate special
situations. Also, developers of third-party libraries will find the iterator classes useful.

Iterators use the header <iterator>.

The Basic Iterator Types

There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed
randomly.

Bidirectional Store and retrieve values. Forward and backward moving.

Forward Store and retrieve values. Forward moving only.

Input Retrieve but not store values. Forward moving only.

Output Store but not retrieve values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one
that has lesser capabilities. For example, a forward iterator can be used in place of an
input iterator. '

The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus, if



Chapter 35: STL Iterators, Allocators, and Function Objects 863

a reverse iterator points to the end of a sequence, incrementing that iterator will cause
it to point one element before the end.

Stream-based iterators are available that allow you to operate on streams through
iterators. Finally, insert iterator classes are provided that simplify the insertion of elements
into a container.

All iterators must support the pointer operations allowed by their type. For example,
an input iterator class must support —>, ++, ¥, ==, and !=. Further, the * operator cannot be
used to assign a value. By contrast, a random-access iterator must support —>, +, ++, ~=,—— %,
<, >, <=, >=,—=, +=, ==, =, and [ ]. Also, the * must allow assignment.

The Low-Level Iterator Classes

The <iterator> header defines several classes that provide support for and aid in the
implementation of iterators. As explained in Chapter 24, each of the STL containers defines
its own iterator type, which is typedefed as iterator. Thus, when using the standard
STL containers, you will not usually interact directly with the low-level iterator classes
themselves. But you can use the classes described here to derive your own iterators.

Several of the iterator classes make use of the ptrdiff_t type. This type is capable of
representing the difference between two pointers.

iterator

The iterator class is a base for iterators. It is shown here:

template <class Cat, class T, class Dist = ptrdiff_t,
class Pointer = T *, class Ref = T &>
struct iterator {
typedef T value_type;
typedef Dist difference_type;
typedef Pointer pointer;
typedef Ref reference;
typedef Cat iterator_category;

Here, difference_type is a type that can hold the difference between two addresses,
value_type is the type of value operated upon, pointer is the type of a pointer to a
value, reference is the type of a reference to a value, and iterator_category describes
the type of the iterator (such as input, random-access, etc.).

The following category classes are provided.

struct input_iterator_tag {};
struct output_iterator_tag {};




C++: The Complete Reference

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public
bidirectional_iterator_tag {};

iterator_traits
The class iterator_traits provides a convenient means of exposing the various types
defined by an iterator. It is defined like this:

template<class Iterator> struct iterator_traits {
typedef Iterator::difference_type difference_type;
typedef Iterator::value_type value_type;
typedef Iterator::pointer pointer;
typedef Iterator::reference reference;
typedef Iterator::iterator_category iterator_category;

The Predefined Iterators

The <iterator> header contains several predefined iterators that may be used directly
by your program or to help create other iterators. These iterators are shown in Table 35-1.
Notice that there are four iterators that operate on streams. The main purpose for the
stream iterators is to allow streams to be manipulated by algorithms. Also notice the
insert iterators. When these iterators are used in an assignment staternent, they insert
elements into a sequence rather than overwriting existing elements.

Each of the predefined iterators is examined here.

insert_iterator
The insert_iterator class supports output iterators that insert objects into a container. Its
template definition is shown here:

template <class Cont> class insert_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Here, Cont is the type of container that the iterator operates upon. insert_iterator has
the following constructor:

insert_iterator(Cont &cnt, typename Cont::iterator itr);

Here, cnt is the container being operated upon and itr is an iterator into the container
that will be used to initialize the insert_iterator.



Chapter 35: STL Iterators, Allocators, and Function Objects 865

Class Description
insert_iterator An output iterator that inserts anywhere in the container.
back_insert_iterator An output iterator that inserts at the end of a container.

front_insert_iterator An output iterator that inserts at the front of a container.

reverse_iterator A reverse, bidirectional, or random-access iterator.
istream_iterator An input stream iterator.

istreambuf_iterator An input streambuf iterator.

ostream_iterator An output stream iterator.

ostreambuf_iterator An output streambuf iterator.

Table 35-1. The Predefined Iterator Classes

insert_iterator defines the following operators: =, ¥, ++. A pointer to the container is
stored in a protected variable called container. The container's iterator is stored in a
protected variable called iter.

Also defined is the function inserter(), which creates an insert_iterator. It is
shown here:

template <class Cont, class [terator> insert_iterator<Cont>
inserter(Cont &cnt, Iterator itry;

Insert iterators insert into, rather than overwrite, the contents of a container. To
fully understand the effects of an insert iterator, consider the following program. it first
creates a small vector of integers, and then uses an insert_iterator to insert new elements
into the vector rather than overwriting existing elements.

// Demonstrate insert_iterator.
#include <iostream>

#include <iterator>

#include <vector>

using namespace std;

int main()

{

vector<int> v;



866

C++: The Complete Reference

vector<int>::iterator itr;
int 1i;

for (i=0; i<5; i++)
v.push_back (i) ;

cout << "Original array: ";
itr = v.begin();
while(itr != v.end{())

cout << Fitr++ << "o
cout << endl;

itr = v.begin();
itr += 2; // point to element 2

// create insert_iterator to element 2
insert_iterator<vector<int> > i_itr(v, itr);

// insert rather than overwrite
*i_dtr++ = 100;

*1_itr++ = 200;

cout << "Array after insertion: ";
itr = v.begin();

while(itr != v.end())

cout << *itr++ << " v,

return 0;

The output from the program is shown here:

Original array: 0 1 2 3 4
&g Array after insertion: 0 1 100 200 2 3 4

In the program, had the assi gnments of 100 and 200 been done using a standard iterator,
the original elements in the array would have been overwritten. The same basic process
applies to back_insert_iterator and front_insert_iterator as well.



Chapter 35: STL lterators, Allocators, and Function Objects 867

back_insert_iterator

The back_insert_iterator class supports output iterators that insert objects on the end
of a container using push_back(). Its template definition is shown here:

template <class Cont> class back_insert_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Here, Cont is the type of container that the iterator operates upon. back_insert_iterator
has the following constructor:

explicit back_insert_iterator(Cont &cnt);

Here, cnt is the container being operated upon. All insertions will occur at the end.
back_insert_iterator defines the following operators: =, * ++. A pointer to the container
is stored in a protected variable called container.
Also defined is the function back_inserter(), which creates a back_insert_iterator.
It is shown here:

template <class Cont> back_insert_iterator<Cont> back_inserter(Cont &cnt);

front_insert_iterator
The front_insert_iterator class supports output iterators that insert objects on the front
of a container using push_front(). Its template definition is shown here:

template <class Cont> class front_insert_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Here, Cont is the type of container that the iterator operates upon. front_insert_iterator
has the following constructor:

explicit front_insert_iterator(Cont &cnt);

Here, cnt is the container being operated upon. All insertions will occur at the front.
front_insert_iterator defines the following operators: =, %, +-. A pointer to the container
is stored in a protected variable called container.
Also defined is the function front_inserter(), which creates a front_insert_iterator.
[t is shown here:

template <class Cont> front_insert_iterator<Cont> inserter(Cont &cnt);



C++: The Complete Reference

reverse_iterator

The reverse_iterator class supports reverse iterator operations. A reverse iterator operates
the opposite of a normal iterator. For example, ++ causes a reverse iterator to back up.
Its template definition is shown here:

template <class Iter> class reverse_iterator:
public iterator<iterator_traits<1ter>::iterator_category,
iterator_traits<Iter>::value_type,
iterator_traits<Iter>::difference_type,
iterator_traits<lter>::pointer,
iterator_traits<Iter>::reference>

Here, Iter is either a random-access iterator or a bidirectional iterator. reverse_iterator
has the following constructors:

reverse_iterator( );
explicit reverse _iterator(Iter itry;

Here, itr is an iterator that specifies the starting location.

If Iter is a random-access iterator, then the following operators are available: ~>, +,
++, = =% <, >, <=, >=,-=, +=, ==, I=, and [ 1.If Iter is a bidirectional iterator, then
only >, +4, -~ * == and != are available.

The reverse_iterator class defines a protected member called current, which is an
iterator to the current location.

The function base() is also defined by reverse_iterator. Its prototype is shown here:

Iter base( ) const;

It returns an iterator to the current location.

istream_iterator

The istream_iterator class supports input iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType, class Attr = char_traits<CharType>,
class Dist = ptrdiff_t> class istream_iterator:
public iterator<input_iterator_tag, T, Dist, const T *, const T &>

Here, T is the type of data being transferred, and CharType is the character type (char or
wehar _t) that the stream is operating upon. Dist is a type capable of holding the difference
between two addresses. istream_iterator has the following constructors:



Chapter 35: STL Iterators, Altocators, and Function Objects 869

istream_iterator( );
istream_iterator(istream_type &stream);
istream_iterator(const istream_iterator<T, CharType, Attr, Dist> &ob);

The first constructor creates an iterator to an empty stream. The second creates an iterator
to the stream specified by stream. The type istream_type is a typedef that specifies the
type of the input stream. The third form creates a copy of an istream_iterator object.
The istream _iterator class defines the following operators: —>, * ++. The operators
== and '= are also defined for objects of type istream_iterator.
Here is a short program that demonstrates istream_iterator. It reads and displays
characters from cin until a period is received.

// Use istream_iterator
#include <iostream>
#include <iterator>
using namespace std;

int main{)
{

istream_iterator<char> in_it(cin);
do {
cout << *in_it++;

} while (*in_it !'= R I

return 0O;

istreambuf_iterator
The istreambuf_iterator class supports character input iterator operations on a stream.
Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class istreambuf_iterator:
public iterator<input_iterator_tag, CharType, typename Attr::off_type,
CharType *, CharType &>

Here, CharType is the character type (char or wchar_t) that the stream is operating upon.
istreambuf_iterator has the following constructors:

istreambuf_iterator( ) throw();
istreambuf_iterator(istream_type &stream) throw( );
istreambuf_’iterator(streambuf_type *streambuf) throw( );



870

C++: The Complete Reference

The first constructor creates an iterator to an empty stream. The second creates an iterator
to the stream specified by stream. The type istream_type is a typedef that specifies the
type of the input stream. The third form creates an iterator using the stream buffer
specified by streambuf.

The istreambuf _iterator class defines the following operators: *, ++. The operators
== and != are also defined for objects of type istreambuf _iterator.

istreambuf _iterator defines the member function equal(), which is shown here:

bool equal(istreambuf“iterator<CharType, Attr> &ob);

Its operation is a bit counterintuitive. It returns true if the invoking iterator and ob both
point to the end of the stream. It also returns true if both iterators do not point to the
end of the stream. There is no requirement that what they point to be the same. It returns
false otherwise. The == and 1= operators work in the same fashion.

ostream_iterator
The ostream_iterator class supports output iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType, class Attr = char_traits<CharType> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Here, T is the type of data being transferred, CharType is the character type (char or
wchar_t) that the stream is operating upon. ostream_iterator has the following
constructors:

ostream_iterator(ostream_type &stream);
ostream_iterator(ostream_type &streant, const CharType *delim);
ostream_iterator(const ostream_iterator<T, CharType, Attr> &ob);

The first creates an iterator to the stream specified by stream. The type ostream_type is
a typedef that specifies the type of the output stream. The second form creates an
iterator to the stream specified by strean and uses the delimiters specified by delim. The
delimiters are written to the stream after every output operation. The third form creates
a copy of an ostream_iterator object.

The ostream _iterator class defines the following operators: =, *, ++.

Here is a short program that demonstrates ostream_iterator.



Chapter 35: STL Iterators, Allocators, and Function Objects 871

// Use ostream_iterator
#include <iostream>
#include <iterator>
using namespace std;

int main()

{

ostream_iterator<char> out_it (cout);

*out_it = 'X';
out it++;
*out_it = 'Y';
out_it++;

*out_it = ' i

char str|]l = "C++ Iterators are powerful.\n";
char *p = str;

while(*p) *out_it++ = *pt++;
ostream_iterator<double> out_double_it (cout) :
*out_double_it = 187.23;

out_double_it++;

*out_dounle_it = -102.7;

return 0;

The output from this program is shown here:

XYy C++ Iterators are powerful.
187.23-102.7

ostreambuf_iterator
The ostreambuf_iterator class supports character output iterator operations on a stream.
Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void>



872 C++:The Complete Reference

Here, CharType is the character type (char or wchar_t) that the stream is operating upon.
ostreambuf_iterator has the following constructors:

ostreambuf_iterato. vetream_type &stream) throw( );
ostreambuf_iterator( streambuf_type *streambuf) throw( );

The first creates an iterator to the stream specified by stream. The type ostream_type is
a typedef that specifies the type of the input stream. The second form creates an iterator
using the stream buffer specified by streambuf. The type streambuf _type is a typedef
that specifies the type of the stream buffer.

The ostreambuf_iterator class defines the folowing operators: =, ¥, ++. The member

function failed( ) is also defined as shown here:
bool failed( ) const throw( );

It returns false if no failure has occurred and true otherwise.

Two Iterator Functions

There are two special functions defined for iterators: advance() and distance( ). They
are shown here:

template <class Inlter, class Dist> void advance(Inlter &itr, Dist d);
template <class Inlter> ptrdiff_t distance(Inlter start, Inlter end);

The advance() function increments itr by the amount specified by d. The distance()
function returns the number of elements between start and end.

The reason for these two functions is that only random-access iterators allow a value
to be added to or subtracted from an iterator. The advance() and distance( ) functions
overcome this restriction. It must be noted, however, that some iterators will not be
able to implement these functions efficiently.

__| Function Objects

Function objects are classes that define operator(). The STL defines several built-in
function objects that your programs may use. You can also define your own function
objects. Support for function objects is in the <functional> header. Also defined in
<functional> are several entities that support function objects. These are binders,
negators, and adaptors. Each is described here.

Note l Refer to Chapter 24 for an overview of function objects.



Chapter 35: STL lterators, Allocators, and Function Objects

Function Objects

Function objects come in two varieties: binary and unary. The built-in binary function
objects are shown here:

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical _and logical_or

Here are the built-in unary function objects.

logical _not negate

The general form for invoking a function object is shown here:
func_ob<type>()

For example,

E less<int> ()

invokes less( ) relative to operands of type int.
A base class for all binary function objects is binary_function, shown here:

template <class Argumentl, class Argument2, class Result>
struct binary_function {

typedef Argumentl first_argument_type;

typedef Argument2 second_argument_type;

typedef Result result_type;
Y

The base class for all unary functions is unary_function, shown here:

template <class Argument, class Result> struct unary_function {
typedef Argument argument_type;
typedef Result result_type;

i

These template classes provide concrete type names for the generic data types used
by the function object. Although they are technically a convenience, they are almost
always used when creating function objects.

873



874 C++: The Complete Reference

The template specifications for all binary furnction objects are similar, and the template
specifications for all unarv function objects are sinular. Here are examples of cach:

template <class T st

T operatori{; censt T oLargl, oorst Tearglt oo
template <class 7> stiuct negate - urary i Lon T
{

T operator (] (coust T Sarg) conet:

Each operator() function returns the specified result.

Binders

Binders bind a value to an argument of a binary function object, producing a una ry
function object. There are two binders: bind2nd() and bind1st(). Here is how thev
are defined:

template <class BinFunc, class T>

binderlst<BinFunc> bind1st(const BinFunc &op, const T &ualie);
template <class BinFunc, class T>

binder2nd<BinFunc> bind2nd(const BinFunc &op, const T &uvalue);

Here, op is a binary function object, such as less() or greater( ), that provides the desired
operation, and value is the value being bound. bind1st() returns a unary function object
that has op's left-hand operand bound to valie. bind2nd( ) returns a unary function
object that has op's right-hand operand bound to vafue. The bind2nd( ) binder is by far
the most commonly used. In either case, the outcome of a binder is a unary function
object that is bound to the value specified.

The binder1st and binder2nd classes are shown here:

template <class RinFuncs class binder.oo:

public unary_function(typename 1o second_argument _type,

Uypename Ccr:iresult_type>
{
protected:

BinFunc cp;

typename BinFunc :fir
public:

7]

c_argument_type value;




Chapter 35: STL Iterators, Allocators, and Function Objects

binderlst {(const BinFunc &op,

const typename BinFunc::first_argument_type &Vv);

result_type operator () (const argument_tyvpe &v) const;

b

template <class BinFunc> class binderznd:
public unary_function(typename BinFunc::first_argument_type,
typename BinFunc::result_type>
{
protected:
BinkFunc op;
typename BinFunc::second argument_type value;
public:
binder2ndiconst BinFunc &op,
const typename BinFunc::second_argument_type &V);
result type operator () {const argument_type &v! const;

i

Here, BinFunc is the type of a binary function object. Notice that both classes inherit
unary_function. This is why the resulting object of bind1st() and bind2nd() can be
used anywhere that a unary function can be.

Negators
Negators return predicates that yield the opposite of whatever predicate they modify.
The negators are not1() and not2(). They are defined like this:

template <class UnPred> unary_negate<UnPred> notl(const UnPred &pred);
template <class BinPred> binary_negate<BinPred> not2(const BinPred &pred);

The classes are shown here:

template <class UnPred> class unary_negate:

public unary_function<typename UnPred::argument_type, bool>
{
public:

explicit unary_negate(const UnPred &pred):

bool operator () (const argument_type &v) const:

template <class BinPred> class binary_negate:

875



876 C++: The Complete Reference

public binary function<typena- BinPred::first_argument_type,
typens - . BinPred::second_argument_type,
bool>
{
public:

explicit binary_negate(const BinPred &pred) ;
bool operatoxr () (const first_argument_type &vi,
const second_argument_type &v2) const;

Y

In both classes, operator( ) returns the negation of the predicate specified by pred.

Adaptors

The header <functional> defines several classes called adaptors that allow you to adapt
a function pointer to a form that can be used by the STL. For example, you can use an
adaptor to allow a function such as stremp() to be used as a predicate. Adaptors also
exist for member pointers.

The Pointer-to-Function Adaptors

The pointer-to-function adaptors are shown here:

template <class Argurnent, class Result>
pointer_to_unary_function<Argument, Result>
ptr_fun(Result (*func)(Argument));
template <class Argument], class Argument2, class Result>
pointer_to_binary_function<Argumentl, Argument2, Result>
ptr_fun(Result (*func)(Argumentl, Argument2));

Here, ptr_fun() returns either an object of type pointer_to_unary_function or
pointer_to_binary_function. These classes are shown here:

template <class Argument, class Result>

class pointer_to_unary function:
public unary_function<Argument, Result>

{

public:
explicit pointer to_unary_ function(Result (*func) (Argument));
Result operator () (Argument arg) const;

Y




Chapter 35: STL lterators, Allocators, and Function Objects

template <class Argumentl, class Argument2, class Result>
class pointer_to_kbinary function:

~ublic binary function<Argumentl, Argument2, Fesult>
{
public:

explicit pointer to binary_ function(

Result (* func) (Argumentl, Argumentz));

Result operator () (Argumentl argl, Argument2 argZ2) const;

Y

For unary functions, operator() returns
funclarg).

For binary functions, operator() returns
func(argd, arg2);

The type of the result of the operation is specified by the Result generic type.

The Pointer-to-Member Function Adaptors

The pointer-to-member function adaptors are shown here:

template<class Result, class T>
mem_fun_t<Result, T> mem_fun(Result (Te*func)());
template<class Result, class T, class Argument>
mem_funl_t<Result, T, Argument>
mem_funl(Result (T:*func)(Argument));

Here, mem_fun() returns an object of type mem_fun_t, and mem_fun1() returns an
object of type mem_fun1_t. These classes are shown here:

template <class Resulit, class T> class mem_fun_t:
public unary function<T *, Result> {

publiic:
expliicit mem_fun_t (Result (T::~func) ());
Result operator () (T *func) const;

877




878 C++: The Complete Reference

template <class Result, class T,
class >vgument> class menm _funl_t:
public binary_functiosn<T *, Argument, Result> {

public:
explicit mem_funl_t (Result (T::*func) (Argument));
Result operator () (T *func, Arcument arg) const;
b

Here, the mem_fun_t constructor calls the member function specified as its parameter.
The mem_funl_t constructor calls the member function specified as its first parameter,
passing a value of type Argument as its second parameter.

There are parallel classes and functions for using references to members. The
general form of the functions is shown here:

template<class Result, class T>
mem_fun_ref_t<Result, T> mem_fun_ref(Result (T func)());

template<class Result, class T, class Argument>
mem_funl_ref_t<Result, T, Argument>
mem_funl_ref(Result (T:*func)(Argument));

The classes are shown here:

i
o .
@% template <class Result, class T> class mem_fun_ref t:

public unary_function<T, Result>

{

public:
explicit mem_fun_ref_t (Result (T::*func) ());
Result operator(: (T &func) const;

b

template <class Result, class T, class Argument>
class mem_funl ref t:
public binary_ function<T, Result, Argument:
{
public:
explicit mem_funl ref t(Result (T::*func) (Argument))
Result operator(;, (T &func, Argument arg) const;

I



Chapter 35: STL Iterators, Allocators, and Function Objects 879

! Allocators

An allocator manages memory allocation for a container. Since the STL defines a
Jdofault allocator that is automatically used by the containers, most programmers will
mever need to know the details about allocators or create their own. However, these
details are useful if vou are creating vour own library classes, etc.

All allocators miur 1 satisfy several requirements. First, they must define the
fotlowing tvpes:

const_pointer A const pointer to an object of type value_type.
const_reference A const reterence to an object of tvpe value_type.

difference _tvpe Can represent the difference between two addresses.

pointer A pointer to an object of tvpe value_type.

reference A reference to an abject of type value _type.

size_type Capable of holding the size of the largest possible object that

can be allocated.

value _type The type of object being allocated.

Second, they must provide the following functions.

address Returns a pointer given a reference.
allocate Allocates memory.
deallocate Frees memory.
max_size Returns the maximum number of objects that can be allocated.
construct Constructs an object.
destroy Destrovs an object.
The operations == and != must also be defined.

e default aillocator is allocator, and it is defined within the header <memory>. Its
template specification is shown here:

template <class T> class allocator

Here, T is the tvpe of objects that allocator will be allocating. allocator defines the following
constructors.

allocator( ) throw();
aNocator(const allocator<T> &ob) throw();



880 C++: The Complete Reference

The first creates a new allocator. The second creates a copy of ob.

The operators == and != are defined for allocator. The member functions defined by
allocator are shown in Table 35-2.

One last point: A specialization of allocator for void * pointers is also defined.

Function Description

pointer address(reference ob) const; Returns the address of ob.

const_pointer address(const_reference ob) const;

pointer allocate(size_type num, Returns a pointer to
allocat0r<void>::Const_pointer h=0); allocated memory that is

large enough to hold num
objects of type T. The value
of h is a hint to the function
that can be used to help
satisfy the request or
ignored.

void construct(pointer ptr, const_reference val); Constructs an object of type
T with the value specified by
val at ptr. :

void deallocate(pointer ptr, size_type num); Deallocates nim objects of
type T starting at ptr. The
value of ptr must have been
obtained from allocate( ).

void destroy(pointer ptr); Destroys the object at ptr.
Its destructor is
automatically called.

size_type max_size( ) const throw( ); Returns the maximum
number of objects of type T
that can be allocated.

Table 35-2. Member Functions of allocator




